Isotropy over function fields of Pfister forms

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isotropy over Function Fields of Pfister Forms

The question of which quadratic forms become isotropic when extended to the function field of a given form is studied. A formula for the minimum dimension of the minimal isotropic forms associated to such extensions is given, and some consequences thereof are outlined. Especial attention is devoted to function fields of Pfister forms. Here, the relationship between excellence concepts and the i...

متن کامل

Isotropy of Products of Quadratic Forms over Field Extensions

The isotropy of products of Pfister forms is studied. In particular, an improved lower bound on the value of their first Witt index is obtained. This result and certain of its corollaries are applied to the study of the weak isotropy index (or equivalently, the sublevel) of arbitrary quadratic forms. The relationship between this invariant and the level of the form is investigated. The problem ...

متن کامل

Automorphic Forms and Sums of Squares over Function Fields

We develop some of the theory of automorphic forms in the function field setting. As an application, we find formulas for the number of ways a polynomial over a finite field can be written as a sum of k squares, k ≥ 2. Given a finite field Fq with q odd, we want to determine how many ways a polynomial in Fq[T ] can be written as a sum of k squares. For k ≥ 3 (or k = 2, −1 not a square in Fq), t...

متن کامل

A Hasse Principle for Quadratic Forms over Function Fields

We describe the classical Hasse principle for the existence of nontrivial zeros for quadratic forms over number fields, namely, local zeros over all completions at places of the number field imply nontrivial zeros over the number field itself. We then go on to explain more general questions related to the Hasse principle for nontrivial zeros of quadratic forms over function fields, with referen...

متن کامل

Quadratic Forms over Arbitrary Fields

Introduction. Witt [5] proved that two binary or ternary quadratic forms, over an arbitrary field (of characteristic not 2) are equivalent if and only if they have the same determinant and Hasse invariant. His proof is brief and elegant but uses a lot of the theory of simple algebras. The purpose of this note is to make this fundamental theorem more accessible by giving a short proof using only...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2012

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2012.03.025